Principal Axis Regression

Prepared by: Wm Stein

Linear Regression in the "usual" or "Type I" mode, as described by Sokal \& Rohlf (Biometry 3rd Edition 1995) involves specifying in advance which of two variables is to be considered fixed and independent (X) versus dependent with natural variation (Y). This prior assignment is useful for prediction of Y from X, and for calculating confidence intervals, since all variation from a trend line is interpreted to occur in Y alone with a single Normally distributed error term ε. For futher details, I highly recommend reading Sokal \& Rohlf's discussion of this in their chapters on Regression and Correlation. Type II regressions, by constrast to Type I, are useful primarily for finding "best fit" trend lines between variables each of which are considered to have natural variation. Rather than prediction of Y from X, the main object is to describe a relationship between variables in a bivariate sense.

Principal Axis (PA) Regression (also called Major Axis (MA) Regression) is derived from principal axes (as in PCA) of variables using either standardized (correlation matrix) or unstandardized (covariance matrix) data. This choice, as with all PCA methods, centers around whether the researcher believes the scale different variables are measured interferes or enhances interpretation of variable relationships. It is typical for the covariance matrix to be used when "slopes" have potential meaning as, for instance, in allometry. Otherwise, use of the correlation matrix is considered "conservative".

Assumptions:

- Type II regressions are symmetrical with regard to natural variation.

Each variable $X \& Y$ is considered to be derived from a population of possible values:
$-Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}$ is a random sample $\sim N\left(\mu_{Y}, \sigma_{Y}{ }^{2}\right)$.
$-X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ is a random sample $\sim N\left(\mu_{X}, \sigma_{X}{ }^{2}\right)$

- Values of X_{i} are matched to Y_{i}

Model: \quad here: α is the y intercept of the regression line (translation)
$Y=\alpha+\beta X \quad \beta$ is the slope of the regression line (scaling coefficient) where: each variable has its own error term. This will not be analyzed explicitly since no predictions are formed.
Example: Sokal \& Rohlf p. 546 Box 14.12
K := READPRN("c:/RData/SR15.2.txt")
$\mathrm{X}:=\mathrm{K}^{\langle 0\rangle} \quad \mathrm{Y}:=\mathrm{K}^{\langle 1\rangle} \quad$ < assigning variables $\mathrm{X} \& \mathrm{Y}$ from matrix K
$X_{\text {bar }}:=\operatorname{mean}(X) \quad X_{\text {bar }}=195.58333 \quad<$ mean for $X=$ first column in K
$\mathrm{Y}_{\text {bar }}:=\operatorname{mean}(\mathrm{Y}) \quad \mathrm{Y}_{\text {bar }}=12.0475 \quad<$ mean for $\mathrm{Y}=$ second column in \mathbf{K}
$\mathrm{n}:=$ length $\left(\mathrm{K}^{\langle 0\rangle}\right) \quad \mathrm{n}=12 \quad$ < number of paired observations

Least Squares Estimation of the Regression Line:

Sums of Squares and Cross Products corrected for mean location:

$K=$| | 0 | 1 |
| :---: | ---: | ---: |
| 0 | 159 | 14.4 |
| 1 | 179 | 15.2 |
| 2 | 100 | 11.3 |
| 3 | 45 | 2.5 |
| 4 | 384 | 22.7 |
| 5 | 230 | 14.9 |
| 6 | 100 | 1.41 |
| 7 | 320 | 15.81 |
| 8 | 80 | 4.19 |
| 9 | 220 | 15.39 |
| 10 | 320 | 17.25 |
| 11 | 210 | 9.52 |

$\mathrm{i}:=0$.. $\mathrm{n}-1$
$\mathrm{L}_{\mathrm{xx}}:=\sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{bar}}\right)^{2}$

$$
\mathrm{L}_{\mathrm{XX}}=1.2437 \times 10^{5} \quad<\text { corrected Sum of squares of } \mathbf{X}
$$

$\mathrm{L}_{\mathrm{yy}}:=\sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{Y}_{\mathrm{bar}}\right)^{2} \quad \mathrm{~L}_{\mathrm{yy}}=462.4782 \quad$ <corrected Sum of squares of \mathbf{Y}
$L_{x y}:=\sum\left(X_{i}-X_{b a r}\right) \cdot\left(Y_{i}-Y_{b a r}\right) \quad L_{x y}=6561.6175 \quad$ corrected Sum of cross products

Type I "Simple" Regression of Y on X:

Estimated Regression Coefficients for $\mathbf{Y}=\alpha+\beta \mathbf{X}$:

$$
\begin{array}{lll}
\mathrm{b}:=\frac{\mathrm{L}_{\mathrm{xy}}}{L_{x x}} & \mathrm{~b}=0.05276 & \text { < sample estimate of } \beta \\
\mathrm{a}:=\mathrm{Y}_{\mathrm{bar}}-\mathrm{b} \cdot \mathrm{X}_{\text {bar }} & \mathrm{a}=1.72866 & \text { < sample estimate of } \alpha
\end{array}
$$

Estimated Values of \mathbf{Y} :

$$
Y_{\text {hat }}:=a+b \cdot X_{i}
$$

Residuals:

$$
\varepsilon_{i}:=Y_{\text {hat }_{i}}-Y_{i}
$$

Mean Square for Error:

$$
\text { MSE := } \frac{\sum_{\mathrm{i}}\left(\varepsilon_{\mathrm{i}}\right)^{2}}{\mathrm{n}-2} \quad \text { from ANOVA for Regression }
$$

$Y_{\text {hat }}=$| | 0 |
| :---: | ---: |
| 0 | 10.1174 |
| 1 | 11.1726 |
| 2 | 7.0046 |
| 3 | 4.1028 |
| 4 | 21.9882 |
| 5 | 13.8633 |
| 6 | 7.0046 |
| 7 | 18.6116 |
| 8 | 5.9494 |
| 9 | 13.3357 |
| 10 | 18.6116 |
| 11 | 12.8081 |

$\varepsilon=$| | 0 |
| :---: | ---: |
| 0 | -4.2826 |
| 1 | -4.0274 |
| 2 | -4.2954 |
| 3 | 1.6028 |
| 4 | -0.7118 |
| 5 | -1.0367 |
| 6 | 5.5946 |
| 7 | 2.8016 |
| 8 | 1.7594 |
| 9 | -2.0543 |
| 10 | 1.3616 |
| 11 | 3.2881 |

Standard Error of slope:

$$
\mathrm{s}_{\mathrm{b}}:=\sqrt{\frac{\mathrm{MSE}}{\mathrm{~L}_{\mathrm{xx}}}} \quad \mathrm{~s}_{\mathrm{b}}=0.00967
$$

$<$ See SR p. 467 \& 471 for calculation of s_{b}

Type II RMA - Reduced Major Axis Regression:

Estimated Regression Coefficients:

$$
\begin{array}{ll}
b_{v}:=\sqrt{\frac{L_{y y}}{L_{x x}}} & b_{v}=0.06098 \\
a_{v}:=Y_{\text {bar }}-b_{v} \cdot X_{\text {bar }} & a_{v}=0.12077
\end{array}
$$

< RMA regression estimate of slope
$a_{v}=0.12077 \quad<$ RMA regression intercept. Note that it differs slightly from that given in SR.
Estimated Values of Y:

$$
\mathrm{Y}_{\text {hat }_{\mathrm{i}}}:=\mathrm{a}_{v}+\mathrm{b}_{\mathrm{v}} \cdot \mathrm{X}_{\mathrm{i}}
$$

Residuals:

$$
\varepsilon_{v_{i}}:=\mathrm{Y}_{\mathrm{hat}_{\mathrm{i}}}-\mathrm{Y}_{\mathrm{i}}
$$

Mean Square for Error:

$$
\operatorname{MSE}_{v}:=\frac{\sum_{i}\left(\varepsilon_{v_{i}}\right)^{2}}{n-2}
$$

Standard Error of slope:

$Y v_{\text {hat }}=$| | 0 |
| :---: | ---: |
| 0 | 9.8166 |
| 1 | 11.0362 |
| 2 | 6.2188 |
| 3 | 2.8649 |
| 4 | 23.5372 |
| 5 | 14.1462 |
| 6 | 6.2188 |
| 7 | 19.6345 |
| 8 | 4.9992 |
| 9 | 13.5364 |
| 10 | 19.6345 |
| 11 | 12.9266 |

$\varepsilon_{v}=$| | 0 |
| :---: | ---: |
| 0 | -4.5834 |
| 1 | -4.1638 |
| 2 | -5.0812 |
| 3 | 0.3649 |
| 4 | 0.8372 |
| 5 | -0.7538 |
| 6 | 4.8088 |
| 7 | 3.8245 |
| 8 | 0.8092 |
| 9 | -1.8536 |
| 10 | 2.3845 |
| 11 | 3.4066 |

$$
\mathrm{s}_{\mathrm{b}}:=\sqrt{\frac{\mathrm{MSE}_{\mathrm{v}}}{\mathrm{~L}_{\mathrm{xx}}}} \quad \mathrm{~s}_{\mathrm{b}}=0.01001
$$

< Note that my calculations use residuals in Y calculated from the RMA predicted values, rather than the Type I predicted values. This approach differs from that of SR where values are simply taken from Type I regression above. I'm not sure the value of this.

Multivariate items needed for PCA:

$$
\mathrm{X}:=\mathrm{K}^{\mathrm{T}}
$$

$$
\begin{array}{lll}
\mathrm{n}:=\operatorname{cols}(\mathrm{X}) & \mathrm{n}=12 & \mathrm{p}:=\operatorname{rows}(\mathrm{X}) \mathrm{p}=2 \\
\mathrm{i}:=0 . . \mathrm{n}-1 & & \mathrm{j}:=0 . . \mathrm{p}-1 \\
\mathrm{l}_{\mathrm{i}}:=1 & \mathrm{I}:=\operatorname{identity}(\mathrm{n}) &
\end{array}
$$

Mean Vector:

$$
\mathrm{X}_{\mathrm{bar}}:=\frac{1}{\mathrm{n}} \cdot \mathrm{X} \cdot 1
$$

$$
X_{\mathrm{bar}}=\binom{195.58333}{12.0475} \quad<\text { Mean Vector }
$$

Covariance Matrix:

$$
\mathrm{S}:=\frac{1}{\mathrm{n}-1} \cdot \mathrm{X} \cdot\left(\mathrm{I}-\frac{1}{\mathrm{n}} \cdot 1 \cdot \mathrm{l}^{\mathrm{T}}\right) \cdot \mathrm{X}^{\mathrm{T}} \quad \mathrm{~S}=\left(\begin{array}{cc}
11306.26515 & 596.51068 \\
596.51068 & 42.04348
\end{array}\right) \quad<\text { Covariance Matrix }
$$

Correlation Matrix:

$$
\mathrm{R}:=\mathrm{D} \cdot \mathrm{~S} \cdot \mathrm{D} \quad \mathrm{R}=\left(\begin{array}{cc}
1 & 0.86519 \\
0.86519 & 1
\end{array}\right) \quad<\text { Correlation Matrix }
$$

Eigenanalysis for Standardized Data:

$$
\begin{array}{ll}
\Lambda_{\mathrm{S}}:=\operatorname{reverse}(\operatorname{sort}(\operatorname{eigenvals}(\mathrm{R}))) & \Lambda_{\mathrm{S}}=\binom{1.86519}{0.13481} \\
\mathrm{E}_{\mathrm{S}}^{\left\langle\mathrm{j}^{\prime}\right\rangle}:=\operatorname{eigenvec}\left(\mathrm{R}, \Lambda_{\mathrm{s}_{\mathrm{j}}}\right) & \mathrm{E}_{\mathrm{S}}=\left(\begin{array}{ll}
0.70711 & -0.70711 \\
0.70711 & 0.70711
\end{array}\right)
\end{array} \begin{aligned}
& \text { < Eigenvalues in numerical order } \\
& \begin{array}{l}
\text { Eigenvectors in corresponding columns. } \\
\text { Directions indicate 45 degrees from the } \\
\text { original axes. This makes sense because }
\end{array} \\
& \sqrt{\frac{\mathrm{S}_{1,1}}{\mathrm{~S}_{0,0}}=0.06098} \quad \begin{array}{l}
\text { < Slope coefficient calculated directly } \\
\text { the variables have equal variance }=1 \text { when } \\
\text { standardized. }
\end{array}
\end{aligned}
$$

Eigenanalysis for Unstandardized Data:

$$
\begin{array}{ll}
\Lambda:=\operatorname{reverse}(\operatorname{sort}(\operatorname{eigenvals}(\mathrm{S}))) & \Lambda=\binom{11337.76601}{10.54261}
\end{array} \quad \text { < Eigenvalues in numerical order }
$$

Estimated Regression Coefficients:

$$
\left.\begin{array}{l}
\mathrm{B}_{\mathrm{j}}:=\frac{\mathrm{S}_{0,1}}{\Lambda_{\mathrm{j}}-\mathrm{S}_{0,0}} \\
\frac{\mathrm{E}_{0,0}}{\mathrm{E}_{1,0}}=18.93633 \quad \frac{\mathrm{E}_{0,1}}{\mathrm{E}_{1,1}}=-0.05281 \quad<\text { eigenvector ratios } \\
-0.05281
\end{array}\right) \quad \begin{aligned}
& 18.93633 \\
& \text { Int }:=\mathrm{X}_{\mathrm{bar}_{0}}-\mathrm{B} \cdot \mathrm{X}_{\mathrm{bar}_{1}} \quad \text { Int }=\binom{-32.5521}{196.2195} \quad<\text { Intercepts }
\end{aligned}
$$

< Slopes calculated as in Box on SR p. 589 but note that these are just the ratio of components of the Eigenvectors - i.e., "slopes".

Confidence Interval for Slope:

$$
\mathrm{n}=12
$$

$\alpha:=0.05$ < Set value as desired
$\mathrm{qF}(1-\alpha, 1, \mathrm{n}-2)=4.9646$
$\mathrm{H}:=\frac{\mathrm{qF}(1-\alpha, 1, \mathrm{n}-2)}{\left[\left(\frac{\Lambda_{0}}{\Lambda_{1}}+\frac{\Lambda_{1}}{\Lambda_{0}}-2\right) \cdot(\mathrm{n}-1)\right]}$
$\Lambda=\binom{11337.76601322}{10.5426133}$
$\mathrm{E}=\left(\begin{array}{cc}0.99860854 & -0.05273506 \\ 0.05273506 & 0.99860854\end{array}\right)$
$H=0.0004204561$
$A:=\sqrt{\frac{H}{1-H}}$
$L:=\binom{\frac{\mathrm{B}_{0}-\mathrm{A}}{1+\mathrm{B}_{0} \cdot \mathrm{~A}}}{\frac{\mathrm{~B}_{0}+\mathrm{A}}{1-\mathrm{B}_{0} \cdot \mathrm{~A}}}$
$\mathrm{L}=\binom{13.6244648}{30.9940441} \quad<$ confidence for slope $\mathbf{B}_{\mathbf{0}}$

Prototype in R:

COMMANDS:

> K=read.table("c:/2008Morphometrics/SR15.2.txt")

$$
>\mathbf{K}
$$

$>S=\operatorname{cov}(K)$
$>S$
$>\mathrm{R}=\operatorname{cor}(\mathrm{K})$
$>$ R
$>$ eigen(S)

V1 V2
V1 11306.2652596 .51068
V2 596.510742 .04348
${ }^{\wedge}$ returns covariance matrix S
V1 V2
V1 1.00000000 .8651857
V2 0.86518571 .0000000
\wedge returns correlation matrix \mathbf{R}
\$values
[1] $11337.76601 \quad 10.54261$ <returns eigenvalues
\$vectors
[,1] [,2] < returns eigenvectors
[1,] 0.99860854-0.05273506
$[2] 0.05273506 \quad$,
$>$ eSvectors[1,1]
$>$ eSvectors[2,1]
> b0=e\$vectors $[1,1] /$ e\$vectors $[2,1]$
$>$ b0
$>$ b1=e\$vectors[1,2]/e\$vectors[2,2] $>$ b1
[1] 0.9986085
[1] 0.05273506
[1] 18.93633
[1] -0.05280855
< extracting first eigenvector < calculating first slope < calculating second slope
< returns data in K

V1 V2
115914.40
217915.20
310011.30
$\begin{array}{lll}4 & 45 & 2.50\end{array}$
538422.70
623014.90
$\begin{array}{lll}7 & 100 & 1.41\end{array}$
832015.81
9804.19
1022015.39
1132017.25
122109.52
$>\mathrm{X} 0=\mathrm{K} \$ \mathrm{~V} 1$
$>\mathrm{X} 1=\mathrm{K} \$ \mathrm{~V} 2$
$>\operatorname{Int0}=$ mean(X0)-b0*mean(X1)
$>\operatorname{Int} 1=$ mean(X0)- b1*mean(X1)
$>$ Int0
$>$ Int1
[1] -32.55209 < calculating intercepts

$$
\text { [1] } 196.2195
$$

$$
\text { Int }=\binom{-32.5520906}{196.2195443}
$$

