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Ybar mean Y( ) Ybar 12.0475 < mean for Y = second column in K

n length K 0
   n 12 < number of paired observations

Least Squares Estimation of the Regression Line:
Sums of Squares and Cross Products corrected for mean location:

i 0 n 1

Lxx

i

X
i
Xbar 2

Lxx 1.2437 10
5

 < corrected Sum of squares of X

Lyy

i

Y
i
Ybar 2 Lyy 462.4782 < corrected Sum of squares of Y

Lxy

i

X
i
Xbar  Y

i
Ybar  Lxy 6561.6175 < corrected Sum of cross products

ORIGIN 0 Prepared by:
Wm SteinPrincipal Axis Regression

Linear Regression in the "usual" or "Type I" mode, as described by Sokal & Rohlf (Biometry 3rd Edition 1995) 
involves specifying in advance which of two variables is to be considered fixed and independent (X) versus dependent 
with natural variation (Y).  This prior assignment is useful for prediction of Y from X, and for calculating confidence 
intervals, since all variation from a trend line is interpreted to occur in Y alone with a single Normally distributed 
error term .  For futher details, I highly recommend reading Sokal & Rohlf's discussion of this in their chapters on 
Regression and Correlation.  Type II regressions, by constrast to Type I, are useful primarily for finding "best fit" 
trend lines between variables each of which are considered to have natural variation.  Rather than prediction of Y 
from X, the main object is to describe a relationship between variables in a bivariate sense. 

Principal Axis (PA) Regression (also called Major Axis (MA) Regression) is derived from principal axes (as in PCA) of  
variables using either standardized (correlation matrix) or unstandardized (covariance matrix) data.  This choice, as 
with all PCA methods, centers around whether the researcher believes the scale different variables are measured 
interferes or enhances interpretation of variable relationships.  It is typical for the covariance matrix to be used when 
"slopes" have potential meaning as, for instance, in allometry.  Otherwise, use of the correlation matrix is considered 
"conservative".

Assumptions:
- Type II regressions are symmetrical with regard to natural variation.  
   Each variable X & Y is considered to be derived from a population of possible values:

- Y1, Y2, Y3, ... , Yn is a random sample ~ N(Y,Y
2). 

- X1, X2, X3, ... , Xn is a random sample ~ N(X,X
2)

- Values of  Xi are matched to Yi

Model: here:  is the y intercept of the regression line (translation)

  is the slope of the regression line (scaling coefficient)
where:  each variable has its own error term.  This will not be 
            analyzed explicitly since no predictions are formed.  

Y = +X

Example: Sokal & Rohlf p. 546 Box 14.12

K READPRN "c:/RData/SR15.2.txt"( )

X K 0
 

 Y K 1
 

 < assigning variables X & Y from matrix K

Xbar mean X( ) Xbar 195.58333 < mean for X = first column in K 
K

0 1

0

1

2

3

4

5

6

7

8

9

10

11

159 14.4

179 15.2

100 11.3

45 2.5

384 22.7

230 14.9

100 1.41

320 15.81

80 4.19

220 15.39

320 17.25

210 9.52
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< See SR p. 467 & 471 for calculation of sb

Type II RMA - Reduced Major Axis Regression:

Estimated Regression Coefficients:

b
Lyy

Lxx
 b 0.06098 < RMA regression estimate of slope

a Ybar b Xbar a 0.12077 < RMA regression intercept.  Note that it  differs slightly
    from that given in SR.  

Estimated Values of  Y:

Yhat
i

a b X
i



Residuals:


i

Yhat
i
Y
i



Mean Square for Error:
Yhat

0

0

1

2

3

4

5

6

7

8

9

10

11

9.8166

11.0362

6.2188

2.8649

23.5372

14.1462

6.2188

19.6345

4.9992

13.5364

19.6345

12.9266

 

0

0

1

2

3

4

5

6

7

8

9

10

11

-4.5834

-4.1638

-5.0812

0.3649

0.8372

-0.7538

4.8088

3.8245

0.8092

-1.8536

2.3845

3.4066



MSE
i


i 2

n 2


Standard Error of slope:

sb
MSE

Lxx
 sb 0.01001 < Note that my calculations use residuals in Y calculated from the

   RMA predicted values, rather than the Type I predicted values.  This
   approach differs from that of SR where values are simply taken from
   Type I regression above.  I'm not sure the value of this.   

i

Type I "Simple" Regression of Y on X:

Estimated Regression Coefficients for Y =  + X:

b
Lxy

Lxx
 b 0.05276 < sample estimate of 

a Ybar b Xbar a 1.72866 < sample estimate of 

Estimated Values of  Y:

Yhat
i

a b X
i



Residuals:

 i Yhat
i
Y
i


Yhat

0

0

1

2

3

4

5

6

7

8

9

10

11

10.1174

11.1726

7.0046

4.1028

21.9882

13.8633

7.0046

18.6116

5.9494

13.3357

18.6116

12.8081

 

0

0

1

2

3

4

5

6

7

8

9

10

11

-4.2826

-4.0274

-4.2954

1.6028

-0.7118

-1.0367

5.5946

2.8016

1.7594

-2.0543

1.3616

3.2881



Mean Square for Error:

< from ANOVA for Regression 
    Standard TableMSE

i

 i 2
n 2



Standard Error of slope:

sb
MSE

Lxx
 sb 0.00967
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Eigenanalysis for Standardized Data:
s reverse sort eigenvals R( )( )( ) s

1.86519

0.13481









 < Eigenvalues in numerical order

s
j 

eigenvec R s
j

  s
0.70711

0.70711

0.70711

0.70711









 < Eigenvectors in corresponding columns.
   Directions indicate 45 degrees from the
   original axes.  This makes sense because
   the variables have equal variance =1 when
   standardized.

S
1 1

S
0 0

0.06098 < Slope coefficient calculated directly
   from covariance matrix S.

Eigenanalysis for Unstandardized Data:

 reverse sort eigenvals S( )( )( ) 
11337.76601

10.54261









 < Eigenvalues in numerical order


j 

eigenvec S  j  
0.9986085

0.0527351

0.0527351

0.9986085









 < Eigenvectors in corresponding columns

Estimated Regression Coefficients:

B
j

S
0 1

 j S
0 0


B

18.93633

0.05281








 < Slopes calculated as in Box on SR p. 589
   but note that these are just the ratio of
   components of the Eigenvectors - i.e., 
   "slopes".0 0

1 0
18.93633

0 1

1 1
0.05281 < eigenvector ratios

Int Xbar
0

B Xbar
1

 Int
32.5521

196.2195









 < Intercepts

Multivariate items needed for PCA:
X KT

n cols X( ) n 12 p rows X( ) p 2

i 0 n 1 j 0 p 1 k 0 p 1

l
i

1 I identity n( )

Mean Vector:

Xbar
1

n
X l Xbar

195.58333

12.0475









 < Mean Vector

Covariance Matrix:

S
1

n 1
X I

1

n
l lT





 XT S
11306.26515

596.51068

596.51068

42.04348









 < Covariance Matrix

Correlation Matrix:

D
j k

1

S
j k

j k=if

0 otherwise


D

0.0094

0

0

0.15422









 < Inverse Standard Deviation Matrix

R D S D R
1

0.86519

0.86519

1









 < Correlation Matrix
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[1] -0.05280855
< calculating second slope

B
18.93632903

0.05280855









< calculating first slope

< extracting first eigenvector
[1] 0.9986085
[1] 0.05273506

[1] 18.93633

< returns eigenvectors

< returns eigenvalues
$values
[1] 11337.76601    10.54261

$vectors
           [,1]        [,2]
[1,] 0.99860854 -0.05273506
[2,] 0.05273506  0.99860854

^ returns correlation matrix R

          V1        V2
V1 1.0000000 0.8651857
V2 0.8651857 1.0000000

^ returns covariance matrix S

           V1        V2
V1 11306.2652 596.51068
V2   596.5107  42.04348

< returns data in K

COMMANDS:

> K=read.table("c:/2008Morphometrics/SR15.2.txt")
> K

> S=cov(K)
> S

> R=cor(K)
> R

> eigen(S)

> e$vectors[1,1]
> e$vectors[2,1]

> b0=e$vectors[1,1]/e$vectors[2,1]
> b0

> b1=e$vectors[1,2]/e$vectors[2,2]
> b1

Prototype in R:
    V1    V2
1  159 14.40
2  179 15.20
3  100 11.30
4   45  2.50
5  384 22.70
6  230 14.90
7  100  1.41
8  320 15.81
9   80  4.19
10 220 15.39
11 320 17.25
12 210  9.52

< confidence for slope B0L
13.6244648

30.9940441









L

B
0

A

1 B
0
A

B
0

A

1 B
0
A



















A 0.0205093382A
H

1 H


H 0.0004204561
H

qF 1  1 n 2 
0

1

1

0
 2









n 1( )










qF 1  1 n 2  4.9646

< Set value as desired 0.05


0.99860854

0.05273506

0.05273506

0.99860854










11337.76601322

10.5426133









n 12
Confidence Interval for Slope:
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> X0=K$V1
> X1=K$V2
> Int0=mean(X0)- b0*mean(X1)
> Int1=mean(X0)- b1*mean(X1)
> Int0
> Int1

[1] -32.55209
[1] 196.2195

< calculating intercepts
Int

32.5520906

196.2195443












