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Linear Regression in the "usual" or "Type I'" mode, as described by Sokal & Rohlf (Biometry 3rd Edition 1995)
involves specifying in advance which of two variables is to be considered fixed and independent (X) versus dependent
with natural variation (Y). This prior assignment is useful for prediction of Y from X, and for calculating confidence
intervals, since all variation from a trend line is interpreted to occur in Y alone with a single Normally distributed
error term &. For futher details, I highly recommend reading Sokal & Rohlf's discussion of this in their chapters on
Regression and Correlation. Type II regressions, by constrast to Type L, are useful primarily for finding "best fit"
trend lines between variables each of which are considered to have natural variation. Rather than prediction of Y
from X, the main object is to describe a relationship between variables in a bivariate sense.

Principal Axis (PA) Regression (also called Major Axis (MA) Regression) is derived from principal axes (as in PCA) of
variables using either standardized (correlation matrix) or unstandardized (covariance matrix) data. This choice, as
with all PCA methods, centers around whether the researcher believes the scale different variables are measured
interferes or enhances interpretation of variable relationships. It is typical for the covariance matrix to be used when
"slopes' have potential meaning as, for instance, in allometry. Otherwise, use of the correlation matrix is considered
"conservative''.

Assumptions:

- Type II regressions are symmetrical with regard to natural variation.
Each variable X & Y is considered to be derived from a population of possible values:

-Y,, Y, Y,, ..., Y, is a random sample ~ N(p,6,2).
- X, X,, X4« s X_is a random sample ~ N(p,,0,%)
- Values of X are matched to Y;

Model: here: aisthey intercept of the regression line (translation)
B is the SlOpe of the regression line (scaling coefficient)
Y =atpX where: each variable has its own error term. This will not be
analyzed explicitly since no predictions are formed. 0 1
Example: Sokal & Rohlf p. 546 Box 14.12 0| 159| 144
K := READPRN("c:/RData/SR15.2.txt" ) 1] 1re] 182
2 100| 11.3
X:= K<0> Y = K<1> < assigning variables X & Y from matrix K 3 45| 25
Xpar := mean(X) Xpar = 195.58333 < mean for X = first column in K K = : zzg ?i;
Yhar = mean(Y) Ypar = 12.0475 < mean for Y = second column in K 6| 100 1.41
3 ( <0>) ~ . . 7 320| 15.81
n := length(K n=12 < number of paired observations ) 80| 4.19
.. . . 9| 220{15.39
Least Squares Estimation of the Regression Line: 0 320 1725
Sums of Squares and Cross Products corrected for mean location: 11] 210 952

i=0.n-1

Lyx = Z (Xi - Xbar)2

i

1.2437 x 105

-
o
>

Il

< corrected Sum of squares of X

2
Lyy:= Z (Yi - Ybar) Lyy = 462.4782 < corrected Sum of squares of Y

i

Lyy = Z (Xi - Xbar) : (Yi - Ybar) Lyy = 6561.6175 < corrected Sum of cross products

i
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Type I ""Simple'" Regression of Y on X:

Estimated Regression Coefficients for Y = o + BX:

b= —2 b = 0.05276 < sample estimate of 3
XX
a:= Ypar — b Xpar a=1.72866 < sample estimate of o
0 0
Estimated Values of Y: 0] 10.1174 0 | -4.2826
Yhat =a+b- X 11 11.1726 1|-4.0274
i ! 2| 7.0046 2 | -4.2954
Residuals: 3| 41028 3| 1.6028
gj= Ypat — Y. 4 [ 21.9882 4[-07118
i 1
' Yhat=|5 | 13.8633| & =|5|-1.0367
Mean Square for Error: 6| 7.0046 6 | 5.5946
Z(S-)z 71 18.6116 7| 2.8016
1
, < from ANOVA for Regression 8 | 5.9494 8 | 1.759%4
1
MSE = —2 Standard Table 9| 13.3357 9 | -2.0543
n—
10| 18.6116 10| 1.3616
Standard Error of slope: 11| 12.8081 11| 3.2881
MSE .
Sp = sp = 0.00967 < See SR p. 467 & 471 for calculation of s,
LXX
Type II RMA - Reduced Major Axis Regression:
Estimated Regression Coefficients:
Lyy . )
by = |— by = 0.06098 < RMA regression estimate of slope
LXX
ay = Ypar — by - Xpar ay = 0.12077 < RMA regression intercept. Note that it differs slightly
from that given in SR.
Estimated Values of Y:
0 0
YVhat, = ay + by - X; 0| 9.8166 0| -45834
Residuals: 1| 11.0362 1| -4.1638
2| 6.2188 2| -5.0812
&y = YVhat — Y,
i i 1 3| 2.8649 3| 0.3649
Mean Square for Error: 4 | 23.5372 4 | 0.8372
2 YVhat =| 5 | 14.1462 €y =|5|-0.7538
Z (Svi) 6| 6.2188 6| 4.8088
MSE,, = ! 7 | 19.6345 7| 3.8245
n-2 8| 4.9992 8 | 0.8092
9 | 13.5364 9| -1.8536
Standard Error of slope: 100 19,6345 10l 23825
11] 12.9266 11| 3.4066
MSE,, . . .
Sp 1= sp = 0.01001 < Note that my calculations use residuals in Y calculated from the
Lxx RMA predicted values, rather than the Type I predicted values. This

approach differs from that of SR where values are simply taken from
Type I regression above. I'm not sure the value of this.
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Multivariate items needed for PCA:

X:=K'
n := cols(X) n=12 p=rows(X)p =2
i=0..n-1 j=0.p—-1 k:=0..p-1
li =1 I := identity(n)
Mean Vector:
1 195.58333
Xpari=— - X1 Xpar = < Mean Vector
bar= bar ( 12.0475 j

Covariance Matrix:

11306.26515 596.51068
S:= ! .X- 1_1.1.1T xb S = < Covariance Matrix
596.51068  42.04348

Correlation Matrix:

1
= if i= 0.0094 0
Dj,k o S if j=k D= < Inverse Standard Deviation Matrix
ik 0  0.15422
0 otherwise
1 0.86519
R:=D-S-D R = < Correlation Matrix
0.86519 1
Eigenanalysis for Standardized Data:
1.86519 . . .
Ag = reverse(sort(eigenvals(R))) Ag = (0 13481] < Eigenvalues in numerical order
O 0.70711 —0.70711 ] ) .
Eg’ = elgenVCC(R,AS_) Eg = < Eigenvectors in corresponding columns.
! 0.70711  0.70711 Directions indicate 45 degrees from the

original axes. This makes sense because

S1 | the variables have equal variance =1 when
— = 0.06098 < Slope coefficient calculated directly standardized.

So,o from covariance matrix S.

Eigenanalysis for Unstandardized Data:

) 11337.76601 ) . .
A := reverse(sort(eigenvals(S))) A= < Eigenvalues in numerical order
10.54261
G . 0.9986085 —0.0527351 ) ) .
E~ = elgenvec(S,A j) E = < Eigenvectors in corresponding columns
0.0527351  0.9986085
Estimated Regression Coefficients:
S0 1
. J 18.93633

Bj T A—S B = ( j < Slopes calculated as in Box on SR p. 589

1700 —0.05281 but note that these are just the ratio of

components of the Eigenvectors - i.e.,

Eg. 0 Eo,1 . . "slopes"
—— = 18.93633 —2 = -0.05281 < eigenvector ratios pes-.
E1,0 Ei1

Int:= X, B-X I 329521 < Int t
nt:= -B- nt = ntercepts
bar, bar, 196.2195
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Confidence Interval for Slope: > o _ (1133776601322 0.99860854 —0.05273506
n= = =
10.5426133 0.05273506 0.99860854
a := 0.05 < Set value as desired
qF(1 = &, 1,n - 2) = 4.9646
Hoe qF(l—oc,l,n—Z)
TT(ag A H = 0.0004204561
—+—-2|-(n-1)
A1 Ag
H
A= |—— A =0.0205093382
1-H
BO - A
1+B, - A
0 13.6244648
L:= L= < confidence for slope B,
BO + A 30.9940441
1 - B0 - A
Vi V2
Prototype in R: 1 159 14.40
2 179 15.20
COMMANDS: 3 100 11.30
4 45 2.50 .
> K=read.table(" c:/2008Morphometrics/SR15.2.txt") 5 3842270  <returnsdatain K
>K 6 230 14.90
Vi V2 7 100 1.41
> S=cov(K) V1 11306.2652 596.51068 8 320 15.81
>S V2 596.5107 42.04348 9 80 4.19
A returns covariance matrix S 10 220 15.39
11 320 17.25
> R=cor(K) Vi V2 12 210 9.52
>R V1 1.0000000 0.8651857
V2 0.8651857 1.0000000
A returns correlation matrix R
> eigen(S)
$values
[1] 11337.76601 10.54261 < returns eigenvalues
$vectors
[1] [,2] < returns eigenvectors
[1,] 0.99860854 -0.05273506
[2,] 0.05273506 0.99860854
> e$vectors[1,1] [1] 0.9986085 < . .
> eSvectors[2,1] [1] 0.05273506 extracting first eigenvector
> b0=e$vectors[1,1]/e$vectors[2,1] ) ]
> b0 [1] 18.93633 < calculating first slope (18.93632903)
i - —0.05280855
> b1=e$vectors[1,2]/e$vectors|[2,2] [1] -0.05280855 < calculating second slope

> b1l
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> X0=K$V1

> X1=K$V2

> Int0=mean(X0)- b0*mean(X1)

> Intl1=mean(X0)- b1*mean(X1)

> Int0 [1] -32.55209 < calculating intercepts —32.5520906
> Intl [1] 196.2195 ~1196.2195443



