The Likelihood Ratio Test

The likelihood ratio test is a general purpose test designed evaluate nested statistical models in a way that is strictly analogous to the F-test for reduced models (RM) and full models (FM) commonly employed with linear models (see *Biostatistics* Worksheet 402). In both, failure to reject the null hypothesis results in model simplification. The likelihood ratio test works not only with linear models, shown here, but may be applied to a very wide array of problems involving Geralized Linear Models (GLM), where Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML) methods are utilized to estimate model parameters. The latter methods/models include, among others, Logistic Regression (see *GLM* 020), Poisson Regression (see *GLM* 040), and Linear Mixed Models (see *LMM* 060) described in Worksheets on the *Biologist's Analytic Toolkit Website* under *Statisistical Models*. For direct comparison of results, the data set analyzed here is the same as for the general F test (*Biostatisics* Worksheet 402). As can be seen, F test and likelihood ratio tests give similar but not exactly the same results. Helpful discussion of this approach appears in Kuter et al. (KNNL) *Applied Linear Statistical Models* 5th Edition, and numerous statistics websites.

Example in R:	> K							
1		X1 >	2	Х3	Х4	Χ5	X6	Y
#LOG LIKELIHOOD AND LIKELIHOOD RATIO TEST	1	6.7 6	52	81	2.59	50	0	6.544
setwd("c:/DATA/Models/")	2	5.1 5	9	66	1.70	39	0	5.999
K=read.table("KNNLCh9SurgicalUnit.txt")	3	7.4 5	7	83	2.16	55	0	6.565
	4	6.5 7	3	41	2.01	48	0	5.854
K	5	7.8 6	55	115	4.30	45	0	7.759
attach(K)	6	5.8 3	8	72	1.42	65	1	5.852
	7	5.7 4	6	63	1.91	49	1	6.250
	8	3.7 6	8	81	2.57	69	1	6.619
	9	6.0 6	57	93	2.50	58	0	6.962
Eitting Enll and Dadmand Engagement dalar	10	3.7 7	6	94	2.40	48	0	6.875
Fitting Full and Reduced linear models:	11	6.3 8	4	83	4.13	37	0	6.613
	12	6.7 5	1	43	1.86	57	0	5.549
Full Model:	13	5.8 9	6	114	3.95	63	1	7.361
#FITTING THE FULL LINEAR MODEL	44	6.5 5	6	77	2.85	41	0	6.288
FM=Im(Y~X1+X2+X3+X4+X5+factor(X6))	45	3.4 7	7	93	1.48	69	0	6.178
	46	6.5 4	0	84	3.00	54	1	6.416
FMg=glm(Y~X1+X2+X3+X4+X5+factor(X6))	47	4.5 7	3	106	3.05	47	1	6.867
anova(FM)	48	4.8 8	6	101	4.10	35	1	7.170
anova(FMg)	49		57		2.86			6.365
	50	3.9 8	2	103	4.55	50	0	6.983
Note: R's function glm() is also employed here since this function	51		7		1.95			6.005
produces a data class for which the general wrapper anova() assumes	52	6.4 8	5		1.21		0	6.361
• • • •	53	6.4 5	9		2.33		0	6.310
anova.glm() which produces likelihood ratio results as default.	54	8.8 7	8	72	3.20	56	0	6.478

> anova(FI Analysis o		ariance	Table					
Response:	Y							
-	Df	Sum Sq	Mean Sq	F value	Pr(>F)			
X1	1	0.7763	0.7763	12.5579	0.0009042	* * *		
Х2	1	2.5888	2.5888	41.8803	5.187e-08	* * *		
Х3	1	6.3341	6.3341	102.4704	2.157e-13	* * *		
X4	1	0.0246	0.0246	0.3976	0.5313820			
X5	1	0.1265	0.1265	2.0460	0.1592180			
factor(X6)	1	0.0522	0.0522	0.8448	0.3627348			
Residuals	47	2.9053	0.0618					
Signif, co	des	• 0 • • •	*** 0.00	1 *** 0.0	0.0	5 1 /	0.1 1	1

 $\sigma_{\rm FM} = \sqrt{0.0618} = 0.2486$

^ "standard error" (standard deviation of the residuals) for the full model

> anova(FMg)

Analysis of Deviance Table

Model: gaussian, link: identity

Response: Y

Terms added sequentially (first to last)

	Df	Deviance	Resid.	Df	Resid. Dev
NULL				53	12.8077
X1	1	0.7763		52	12.0315
X2	1	2.5888		51	9.4427
X3	1	6.3341		50	3.1085
X4	1	0.0246		49	3.0840
X5	1	0.1265		48	2.9575
factor(X6)	1	0.0522		47	2.9053

Reduced Model:

FITTING A REDUCED LINEAR MODEL RM=Im(Y~X1+X2+X3+X5) RMg=glm(Y~X1+X2+X3+X5) anova(RM) anova(RMg)

> anova(RM)

Response: Y

Х1

X2

XЗ

Х5

```
Analysis of Variance Table
```

Residuals 49 2.9602 0.0604

> anova(RMg) Analysis of Deviance Table

Model: gaussian, link: identity

Response: Y

Terms added sequentially (first to last)

Residuals 49 2.9602 0.0604				
	Df	Deviance Resid.	Df	Resid. Dev
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 NULI	_		53	12.8077
×1	1	0.7763	52	12.0315
$\sigma_{\rm RM} = \sqrt{0.0604} = 0.2458$	1	2.5888	51	9.4427
x3	1	6.3341	50	3.1085
x5	1	0.1484	49	2.9602

Estimating Standard Error using Maximum Likelihood:

^ "standard error" (standard deviation of the residuals) for the reduced model

Df Sum Sq Mean Sq F value Pr(>F) 1 0.7763 0.7763 12.8495 0.000776 *** 1 2.5888 2.5888 42.8528 3.349e-08 ***

1 6.3341 6.3341 104.8499 9.118e-14 ***

1 0.1484 0.1484 2.4561 0.123503

		 > #CALCULATING MAXIMUM LIKELIHOOD STANDARD DEVIATION > n=length(K[,1]) > n #NUMBER OF CASES IN DATASET K
	n := 54	<pre>[1] 54 > k=length(K) > k #NUMBER OF VARIABLES IN FM</pre>
	k := 7	[1] 7 > r=2 #DIFFERENCE IN NUMBER OF VARIABLES FM VS RM
		> r
difference in number of parameters > between models FM & RM	r := 2	[1] 2
		> #EXTRACTING STANDARD ERRORS: > #FOR FM:
		> FMsigma = summary(FM)\$sigma > FMsigma
	$\sigma_{FM} := 0.2486247$	[1] 0.2486247 > #FOR RM:
		> RMsigma = summary(RM)\$sigma > RMsigma
	$\sigma_{\rm RM} := 0.2457874$	[1] 0.2457874
		> #MAXIMUM LIKELIHOOD STANDARD DEVIATIONS > #FOR FM:
$ML\sigma_{FM} := \sqrt{\frac{n-k}{n}} \cdot \sigma_{FM}$	MLσ _{FM} = 0.231951	<pre>> FMsigma.ML = FMsigma*sqrt((n-k)/n) > FMsigma.ML [11.0.0210511</pre>
$\sqrt{n} \cdot O_{FM}$		<pre>[1] 0.2319511 > #FOR RM: > RMsigma.ML = RMsigma*sqrt((n-k+r)/n)</pre>
$ML\sigma_{RM} := \sqrt{\frac{n-k+r}{n}} \cdot \sigma_{RM}$	$ML\sigma_{RM} = 0.234132$	> RMsigma.ML [1] 0.234132

Calculating Log Likelihoods for Each Model:

	> # LOG LIKELIHOOD OF MODELS
	> # FM:
	> sum(log(dnorm(x = Y, mean = predict(FM), sd = FMsigma.ML)))
	[1] 2.28368
In likelihood value for FM >	> logLik(FM)
	'log Lik.' 2.28368 (df=8)
	> # RM:
	> sum(log(dnorm(x = Y, mean = predict(RM), sd = RMsigma.ML)))
	[1] 1.778311
In likelihood value for RM >	> logLik(RM)
	'log Lik.' 1.778311 (df=6)
^ ln ="natural logs" in base e	

Note: log likelihoods for each model are calculated here using maximum likelihood estimates of standard error for *each model separately*. This contrasts with the use of standard error using only the FM in the test below.

Likelihood Ratio Test:

Assumptions:

- Standard Linear Regression depends on specifying in advance which variable is to be considered 'dependent' and which 'independent'. This decision matters as changing roles for Y & X usually produces a different result.\

- Y₁, Y₂, Y₃, ..., Y_n (dependent variable) is a random sample.

Note: Although a Normal distribution is assumed here for Y in a linear model, in other instances of the likelihood ratio test, this assumption doesn't apply.

- $X_1, X_2, X_3, \dots, X_n$ (independent variable) with each value of X_i matched to Y_i

Within this setup, two models for the relationship between X and Y variables are explicitly compared:

Full Model:	where: Y_i and $[X_1, X_2,, X_i]$ are matched dependent and independent variables, and
$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\Sigma} \boldsymbol{\beta}_{j} \mathbf{X}_{i} + \boldsymbol{\varepsilon}_{i}$	β_0 is the y intercept of the regression line (translation)
Reduced Model:	β_j are slope coefficients for the <i>full set</i> of independent variables X_1, X_2, X_j β_k are slope coefficients for a smaller <i>set</i> of independent variables <i>within</i> X_j
$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\Sigma} \boldsymbol{\beta}_{k} \mathbf{X}_{i} + \boldsymbol{\varepsilon}_{i}$	

 ε_i is the error factor in prediction of Y_i and a random variable $\sim N(0,\sigma^2)$.

Hypotheses:

H₀: coefficients in j but NOT INCLUDED in k = 0. Note: this is always the more parsimonious (i.e., smaller) model

H₁: at least some of these coeficients not 0

Degrees of Freedom:

n = 54	< n = number of matched observations in dataset
k = 7	< k = number of variables in FM
r = 2	< r = differences in number of variables between FM & RM

Sum of Squares and Standard Error for FM:

Analysis of Variance Table	> #LIKELIHOOD RATIO TEST:
Response: Y Df Sum Sq Mean Sq F value Pr(>F) X1 1 0.7763 0.25579 0.0009042 X2 1 2.5888 2.5888 41.8803 5.187e-08 X3 1 6.3341 6.3341 102.4704 2.157e-13 X4 1 0.0246 0.0246 0.3976 0.5313820 X5 1 0.1265 0.1265 2.0460 0.1592180 factor(X6) 1 0.0522 0.0522 0.8448 0.3627348 Residuals 47 2.9053 0.0618	<pre>> #SUM OF SQUARES ERROR FOR MODELS: > SSE.FM = sum((Y-predict(FM))^2) #SSE for FM > SSE.FM [1] 2.90527 > SSE.RM = sum((Y-predict(RM))^2) #SSE for RM > SSE.RM [1] 2.960161</pre>
> anova(RM) Analysis of Variance Table	> #STANDARD ERROR FOR FM: > s=summary(FM)\$sigma
Response: Y Df Sum Sq Mean Sq F value Pr(>F) X1 1 0.7763 0.7763 12.8495 0.000776 *** X2 1 2.5888 2.5888 42.8528 3.349e-08 *** X3 1 6.3341 6.3341 104.8499 9.118e-14 *** X5 1 0.1484 0.1484 2.4561 0.123503 Residuals 49 2.9602 0.0604	<pre>> s [1] 0.2486247 > s=sqrt(summary(FMg)\$dispersion) > s [1] 0.2486247</pre>

s := 0.2486247

^ Standard errors are the square root of MSE, see above.

 $SSE_{FM} := 2.90527$

 $SSE_{RM} := 2.960161$

 $LRM := e^{\frac{-1}{2} \frac{SSE_{RM}}{s^2}}$

Relative Likelihoods:	Re	lative	Like	lihoo	ds:
------------------------------	----	--------	------	-------	-----

see eq 1.26 in KNNL

-1 SSE _{FM}	
LFM := $e^{2 \frac{2}{s^2}}$	$LFM = 6.2241 \times 10^{-11}$

> LFM = exp(-(1/2)*(SSE.FM/s^2)) #TIMES CONSTANT C > LFM [1] 6.224145e-11 > LRM = exp(-(1/2)*(SSE.RM/s^2)) #TIMES CONSTANT C > LRM [1] 3.992573e-11 > #CONSTANT C: > n #NUMBER OF CASES IN DATASET K [1] 54

> #RELATIVE LIKELIHOODS FOR THE MODELS:

> C=1/((2*pi*s^2)^(n/2)) #CONSTANT IN EQ 1.26 IN KNNL > C [1] 122956414826

> LCFM=C*LFM

[1] 7.652985 > LCRM=C*LRM

[1] 4.909125

> LCFM

> LCRM

```
C := \frac{1}{\left(2 \cdot \pi \cdot s^2\right)^2}
```

$LRM = 3.9926 \times 10^{-11}$. 11

$$C = 1.2296 \times 10$$

$\Lambda_{FM} := C \cdot LFM$	$\Lambda_{\rm FM} = 7.653$
$\Lambda_{\rm RM} \coloneqq {\rm C} \cdot {\rm LRM}$	$\Lambda_{\rm RM} = 4.9091$

Likelihood Ratio Test Statistic:

$SSE_{FM} := 2.9053$		> #LOG LIKELIHOOD RATIO STATISTIC: > LRT=(SSE.RM - SSE.FM)/s^2 > LRT #LOG LIKELIHOOD RATIO STATISTIC
$SSE_{RM} := 2.9602$		[1] 0.8880001
$LRT := \frac{\left(SSE_{RM} - SSE_{FM}\right)}{s^2}$	LRT = 0.8881	< difference here due to rounding

Critical Value of the Test:

$\alpha := 0.05$ < Probability of Type I error must be explicitly set		
$CV := qchisq(1 - \alpha, r)$	CV = 5.9915	< note degrees of freedom reflect difference between the models
Decision Rule:		
IF $F > CV$, THEN REJECT H_0 OTHE	CRWISE ACCEPT H ₀	
LRT = 0.8881	CV = 5.9915	
Probability Value:		> #PROBABILITY OF NULL HYPOTHESIS RM
P := 1 - pchisq(LRT, r)	P = 0.6414	<pre>> P=1-pchisq(LRT,2) > P #PROBABILITY [1] 0.6414654</pre>
ΙΜΟΛΟΤΆΝΤ ΝΛΤΕ		

IMPORTANT NOTE:

FALURE to reject H₀ in this test means that the MORE PARSIMONIOUS model RM is PREFERRED!

Prototype in R:

#LIKELIHOOD RATIO TEST: anova(RM,FM,test="LRT") anova(RMg,FMg,test="LRT")	<pre>> #LIKELIHOOD RATIO TEST: > anova(RM,FM,test="LRT") Analysis of Variance Table</pre>
	Model 1: Y ~ X1 + X2 + X3 + X5
	Model 2: Y ~ X1 + X2 + X3 + X4 + X5 + factor(X6)
	Res.Df RSS Df Sum of Sq Pr(>Chi)
	1 49 2.9602
	2 47 2.9053 2 0.054891 0.6415
	> anova(RMg,FMg,test="LRT")
	Analysis of Deviance Table
	Model 1: Y ~ X1 + X2 + X3 + X5
	Model 2: Y ~ X1 + X2 + X3 + X4 + X5 + factor(X6)
	Resid. Df Resid. Dev Df Deviance Pr(>Chi)
	1 49 2.9602
	2 47 2.9053 2 0.054891 0.6415